Express Healthcare

Novel technology could provide a faster, inexpensive way to detect, Zika virus

77

Over one billion people around the world suffer from one or more neglected tropical diseases (NTD)

Purdue researchers are developing an integrated biosensing platform aimed at detecting and monitoring mosquito-borne diseases faster and cheaper than current methods, to aid in preventing virus outbreaks and their devastating effects.

Lia A Stanciu, a Purdue professor of materials engineering, is leading the research and development of the technology.

Additional researchers are Ernesto Marinero, professor of materials engineering and electrical and computing engineering; and Richard Kuhn, professor and department head of biological sciences and director of the Purdue Institute for Inflammation, Immunology and Infectious Diseases. Kuhn also led the research team that were the first to determine the structure of the Zika virus.

Marinero said,“Over one billion people around the world suffer from one or more neglected tropical diseases (NTD). These diseases, such as dengue fever, yellow fever and the West Nile virus, are classified as NTDs because they largely affect poor populations in the developing world and are a low public health priority for developed continents like North America and Europe.”

He also said,“NTDs, as well as the Zika virus, are transmitted by vectors such as mosquitoes and ticks. Climate change and an increase in travel are causing these types of diseases to steadily spread around the globe, which increases the need for better monitoring and detection methods to help prevent outbreaks.”

Stanciu said that current detection methods for neglected tropical diseases are often time-consuming, expensive and complicated.
She also said,“Laboratory techniques that detect viruses aren’t very efficient and require patients to go to a hospital and wait some time for their results, which isn’t always possible in developing countries,”

Stanciu, Marinero and Kuhn have developed an amperometric biosensor that utilizes functionalized nanoparticles that specifically bind to the target viruses’ DNA or RNA. When the binding occurs there is a change in the device resistance, which the sensor employs to unambiguously detect the presence of the virus. The sensor can then determine whether or not a blood or mosquito sample has the virus and how much of the virus is present. The sensor relies on an agent that will only respond to the intended virus to be detected.

- Advertisement -

Comments are closed.